
ANL-ART-122

FY2017 Updates to the SAS4A/SASSYS-1 Safety Analysis Code

Nuclear Engineering Division

	

About Argonne National Laboratory
Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC
under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago, at
9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne
and its pioneering science and technology programs, see www.anl.gov.

DOCUMENT AVAILABILITY

Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a growing number of pre-1991 documents
are available free via DOE’s SciTech Connect (http://www.osti.gov/scitech/)

Reports not in digital format may be purchased by the public
from the National Technical Information Service (NTIS):
U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandria, VA 22312
www.ntis.gov
Phone: (800) 553-NTIS (6847) or (703) 605-6000
Fax: (703) 605-6900
Email: orders@ntis.gov

Reports not in digital format are available to DOE and DOE contractors
from the Office of Scientific and Technical Information (OSTI):
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
www.osti.gov
Phone: (865) 576-8401
Fax: (865) 576-5728
Email: reports@osti.gov

Disclaimer
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of
document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof,
Argonne National Laboratory, or UChicago Argonne, LLC.

ANL-ART-122

FY2017 Updates to the SAS4A/SASSYS-1 Safety Analysis Code

prepared by
T. H. Fanning

Nuclear Engineering Division
Argonne National Laboratory

September 30, 2017

	 	 FY2017	Updates	to	the	SAS4A/SASSYS-1	Safety	Analysis	Code	
	 	 September	30,	2017	

	 i	 ANL-ART-122	

ABSTRACT	

The SAS4A/SASSYS-1 safety analysis software is used to perform deterministic analysis
of anticipated events as well as design-basis and beyond-design-basis accidents for advanced
fast reactors. It plays a central role in the analysis of U.S. DOE conceptual designs, proposed
test and demonstration reactors, and in domestic and international collaborations.

This report summarizes the code development activities that have taken place during
FY2017. Extensions to the void and cladding reactivity feedback models have been
implemented, and Control System capabilities have been improved through a new virtual data
acquisition system for plant state variables and an additional Block Signal for a variable lag
compensator to represent reactivity feedback for novel shutdown devices.

Current code development and maintenance needs are also summarized in three key areas:
software quality assurance, modeling improvements, and maintenance of related tools. With
ongoing support, SAS4A/SASSYS-1 can continue to fulfill its growing role in fast reactor
safety analysis and help solidify DOE’s leadership role in fast reactor safety both domestically
and in international collaborations.

FY2017	Updates	to	the	SAS4A/SASSYS-1	Safety	Analysis	Code	
September	30,	2017	

ANL-ART-122	 ii	 	

	 	 FY2017	Updates	to	the	SAS4A/SASSYS-1	Safety	Analysis	Code	
	 	 September	30,	2017	

	 iii	 ANL-ART-122	

TABLE	OF	CONTENTS	

Abstract .. i	
Table of Contents ... iii	
List of Figures .. iv	
List of Tables ... iv	
1	 Introduction ... 1	
2	 Current Status .. 1	

2.1	 Government Use .. 1	
2.2	 New License Agreements .. 1	

3	 New Features .. 3	
3.1	 Higher Order Void Reactivity Feedback ... 3	
3.2	 Clad Reactivity Feedback .. 4	
3.3	 Plant Virtual Data Acquisition System .. 5	
3.4	 Control System Extension.. 8	

4	 Other Code Improvements .. 11	
4.1	 Documentation ... 11	
4.2	 Compliance with Fortran 2003 Standards .. 12	
4.3	 Cross-Platform Consistency ... 12	
4.4	 Support for 64-bit Compilation .. 12	
4.5	 Bug Fixes ... 12	

5	 Current Development Needs ... 13	
5.1	 Software Quality Assurance .. 13	
5.2	 Modeling Improvements .. 13	
5.3	 Support for Related Tools .. 14	

6	 Summary ... 15	
7	 References ... 15	

FY2017	Updates	to	the	SAS4A/SASSYS-1	Safety	Analysis	Code	
September	30,	2017	

ANL-ART-122	 iv	 	

LIST	OF	FIGURES	

Figure 1: Results of Applying a Variable Lag Compensator to an Incoming Sine Function ... 11	

LIST	OF	TABLES	

Table 1: U.S. DOE Research and Development Activities Using SAS4A/SASSYS-1 2	
Table 2: SAS License Agreements Established during FY2017 .. 3	
Table 3: Explicit SAS_SYSDASSensor Subclasses .. 7	
Table 4: Input Requirements for a Variable Lag Compensator .. 9	

	

	 	 FY2017	Updates	to	the	SAS4A/SASSYS-1	Safety	Analysis	Code	
	 	 September	30,	2017	

	 1	 ANL-ART-122	

1 Introduction	
SAS4A/SASSYS-1 is a simulation tool used to perform deterministic analysis of anticipated
events as well as design basis and beyond design basis accidents for advanced liquid-metal-
cooled nuclear reactors. [1] With its origin as SAS1A in the late 1960s, the SAS series of codes
has been under continuous use and development for nearly fifty years. It has been identified as a
critical element of safety analysis capabilities for the U.S. Department of Energy. [2,3]

Version 5.2 of SAS4A/SASSYS-1 was completed in March 2017 and released to users in mid-
May following a software quality assurance review and publication of the updated manual. [1]
Sixteen organizations have requested and obtained the new version. The new release introduces
an extension to the Control System module that provides access to an extensive set of core and
core channel state variables such as fuel, cladding, coolant, and structure temperatures; coolant
flow rates and pressures; and several other parameters. [4]

This report summarizes the code development and update activities carried out during FY2017.
Active programs and collaborations that use SAS4A/SASSYS-1 are summarized in Section 2.
New features that have been developed since the release of Version 5.2 are summarized in
Section 3, and general code improvements are summarized in Section 4. Current development
needs are summarized in Section 5.

2 Current	Status	

2.1 Government	Use	

Continued maintenance and improvement of the SAS4A/SASSYS-1 code system is motivated by
the importance of its simulation capability to a number of U.S. Department of Energy programs
as well as domestic and international collaborations. U.S. DOE activities that rely on
SAS4A/SASSYS-1 are summarized in Table 1.

2.2 New	License	Agreements	

During FY2017, eight new license agreements were established for SAS4A/SASSYS-1. These
are summarized in Table 2. Globally, there are twenty-six licensed users/organizations with
access to SAS4A/SASSYS-1 or Mini SAS.

 	

FY2017	Updates	to	the	SAS4A/SASSYS-1	Safety	Analysis	Code	
September	30,	2017	

ANL-ART-122	 2	 	

Table	1:	U.S.	DOE	Research	and	Development	Activities	Using	SAS4A/SASSYS-1	
Program/Activity Description

Test/Demo Reactor
(Versatile Test Reactor)

The U.S. DOE has made an assessment of advanced reactor technology
options to provide technical context for future decisions concerning
irradiation testing capabilities. [5] Safety analyses and licensing activities
for a fast spectrum test reactor require the modeling capabilities of
SAS4A/SASSYS-1.

FFTF Benchmark The U.S. DOE is preparing benchmark specifications for the Passive
Safety Tests (PST) carried out at the Fast Flux Test Facility between 1984
and 1986. The most prominent tests were the loss of flow without scram
(LOFWOS). In collaboration with PNNL, Argonne is assessing the
benchmark specifications and preparing SAS4A/SASSYS-1 models for
verification and validation purposes. [6]

EBR-II IAEA
Benchmark

The U.S. DOE concluded a high-profile Coordinated Research Project
with the International Atomic Energy Agency based on the Shutdown
Heat Removal Tests conducted at EBR-II. [7] U.S. analyses for both
protected (SHRT-17) and unprotected (SHRT-45R) loss-of-flow tests
were completed using SAS4A/SASSYS-1.

DOE/CEA Bilateral
Collaboration

An implementation agreement has been established between the U.S. DOE
and the Commissariat à l'énergie atomique et aux énergies alternatives
(CEA) of France for cooperation in low carbon energy technologies. One
purpose of the agreement is to evaluate the safety performance of the
ASTRID reactor design. DOE participates in this collaboration using the
SAS4A/SASSYS-1 safety analysis code.

DOE/JAEA Bilateral
Collaboration

The Civil Nuclear Energy Research and Development Working Group
(CNWG) was established by the U.S.-Japan Bilateral Commission on
Civil Nuclear Cooperation in 2012 to enhance coordination of joint
nuclear research and development. The Japan Atomic Energy Agency
(JAEA) and Argonne are collaborating under the CNWG to improve the
oxide fuel severe accident modeling capabilities in SAS4A/SASSYS-1.

DOE/CIAE Bilateral
Collaboration

The DOE-NE Office of International Nuclear Energy Policy and
Cooperation has established the U.S.–China Bilateral Civil Nuclear
Energy Cooperative Action Plan (BCNECAP) with the China Institute of
Atomic Energy (CIAE). Joint activities under the action plan include
model development and safety analyses of the China Experimental Fast
Reactor using SAS4A/SASSYS-1.

NEUP (University of
California—Berkeley)

The University of California at Berkeley is using SAS4A/SASSYS-1 to
evaluate safety benefits that might be achieved with autonomous reactivity
control devices in sodium-cooled fast reactors.

NEUP (Kansas State
University)

Kansas State University is preparing experiments with liquid gallium that
can improve the modeling of thermal stratification in SFRs. In
collaboration, the University of Illinois will develop improved
stratification models that could be incorporated into SAS4A/SASSYS-1.

NEUP (University of
Wisconsin)

The University of Wisconsin is preparing experiments with liquid sodium
that can improve the modeling of thermal stratification in SFRs. In
collaboration, Virginia Commonwealth University is working to develop
improved models that could be incorporated into SAS4A/SASSYS-1.

	 	 FY2017	Updates	to	the	SAS4A/SASSYS-1	Safety	Analysis	Code	
	 	 September	30,	2017	

	 3	 ANL-ART-122	

Table	2:	SAS	License	Agreements	Established	during	FY2017	
Organization Code Purpose
Japan Atomic Energy Agency SAS4A/SASSYS-1 CNWG Bilateral
U.S. Nuclear Regulatory Commission SAS4A/SASSYS-1 Government Use
GE-Hitachi Nuclear Energy Mini SAS ARC-100 Support
Westinghouse Electric Company SAS4A/SASSYS-1 LFR Concept
Ulsan National Institute of Science and
Technology (UNIST)

SAS4A/SASSYS-1 Academic Use/
PG-SFR

CITON — Center of Technology and
Engineering for Nuclear Projects

Mini SAS EU ALFRED Project

Illinois Rocstar, LLC SAS4A/SASSYS-1 SBIR Project
Idaho National Laboratory SAS4A/SASSYS-1 Government Use

3 New	Features	
New features have been implemented in SAS4A/SASSYS-1 to account for higher-order

reactivity feedback effects, to implement a plant-wide virtual data acquisition system, and to
update the Control System to implement a variable lag compensator. These developments have
been completed, but they have not passed final software quality assurance reviews and will be
part of a future release.

3.1 Higher	Order	Void	Reactivity	Feedback	
The existing reactivity feedback models in SAS4A/SASSYS-1 assume that all feedback
mechanisms are linear. Previous studies have shown that for significant sodium voiding, non-
linear voiding effects can increase average core outlet temperatures by about 25°C compared to
linear feedback assumptions. [8] Recent studies on LFR systems show that the linear feedback
assumption is acceptable up to about 10% void. [9] Beyond that, non-linear effects start to
become important.
In typical U.S. SFR designs, it is assumed that sodium boiling can be practically eliminated, thus
the capability to model non-linear void effects may not be essential. However, fuel pin failures
can inject fission gases into a coolant channel [10] and introduce an effect similar to sodium
boiling. Since it is straightforward to introduce a non-linear component to the feedback models,
it is prudent to do so.

In SAS4A/SASSYS-1, void reactivity feedback is determined from changes in the coolant mass
distributions in every channel:

𝜌void = 𝜌void
',) 𝑚cool

',) 0 − 𝑚cool
',) 𝑡

)'

	

where 𝜌void
',) is the user-defined void reactivity worth per kilogram (VOIDRA) in axial node 𝑗 of

channel 𝑖 and 𝑚cool is the coolant mass. The above equation applies to coolant density changes
introduced by thermal expansion, boiling, or fission gas injection.

FY2017	Updates	to	the	SAS4A/SASSYS-1	Safety	Analysis	Code	
September	30,	2017	

ANL-ART-122	 4	 	

As shown above, the current model assumes that void reactivity is linear with changes in the
coolant density. Non-linear effects are not considered. In the extended model, second-order
effects are now considered. For example, if the change in the void mass distribution is defined as

𝛥𝑣',) 𝑡 = 𝑚cool
',) 0 − 𝑚cool

',) 𝑡 	

then the extended model can be written as

𝜌void = 𝜌void
',) 𝛥𝑣',) 𝑡 + 𝜌void,2

',) 𝛥𝑣',) 𝑡 7

)'

	

where 𝜌void,2
',) is a new user-defined input (VOIDRA2) with units of void reactivity per kilogram-

squared. In the absence of new input, the code will assume 𝜌void,2
',) = 0 and the current model is

maintained. The extended implementation currently only considers coolant density changes. The
treatment of boiling or fission-gas injection requires additional updates to the severe accident
models in SAS4A/SASSYS-1.

To further improve usability, values for void reactivity feedback can now be defined on an
arbitrary mesh independent of the SAS4A/SASSYS-1 channel mesh. This provides much-needed
flexibility in providing reactivity feedback input from perturbation theory results that may have
been computed on a different mesh. The new input is represented by a free-formatted, arbitrary-
length, channel-dependent input table:

TABLE <n> “Reactivity”
 LENGTH VOIDRA VOIDRA2
 𝛥𝑧9 𝜌void

',9 𝜌void,2
',9

 𝛥𝑧7 𝜌void
',7 𝜌void,2

',7
 …
 𝛥𝑧: 𝜌void

',: 𝜌void,2
',:

END

The LENGTH column is optional. If not provided, SAS4A/SASSYS-1 will assume that the
reactivity feedback values correspond to the axial channel mesh. Otherwise, any level of axial
detail may be specified for the reactivity feedback coefficients.

3.2 Clad	Reactivity	Feedback	
In SAS4A/SASSYS-1, clad reactivity feedback is determined from changes in the clad mass
distributions in every channel:

𝜌clad = 𝜌clad
',) 𝑚clad

',) 𝑡 − 𝑚clad
',) 0

)'

	

where 𝜌clad
',) is the user-defined clad reactivity worth per kilogram (CLADRA) in axial node 𝑗 of

channel 𝑖 and 𝑚clad is the clad mass. The above equation applies to both fuel-pin axial expansion
and clad relocation due to failure.
As shown above, the current model assumes that clad reactivity is linear with changes in the
mass distribution. Non-linear effects are not considered. In the extended model, second-order
effects are now considered. For example, if the change in the clad mass distribution is defined as

	 	 FY2017	Updates	to	the	SAS4A/SASSYS-1	Safety	Analysis	Code	
	 	 September	30,	2017	

	 5	 ANL-ART-122	

𝛥𝑚clad
',) 𝑡 = 𝑚clad

',) 𝑡 − 𝑚clad
',) 0 	

then the extended model can be written as

𝜌clad = 𝜌clad
',) 𝛥𝑚clad

',) 𝑡 + 𝜌clad,2
',) 𝛥𝑚clad

',) 𝑡
7

)'

	

where 𝜌clad,2
',) is a new user-defined input (CLADRA2) with appropriate units. In the absence of new

input, the code will assume 𝜌clad,2
',) = 0 and the current model is maintained. The extended model

only considers cladding axial expansion. Treatment of clad melting and relocation requires
additional updates to the severe accident models.

Like the void reactivity model, the new model allows the values for clad reactivity to be defined
on an arbitrary mesh. The new reactivity table can include values for CLADRA and CLADRA2:

TABLE <n> “Reactivity”
 LENGTH VOIDRA VOIDRA2 CLADRA CLADRA2
 𝛥𝑧9 … … 𝜌clad

',9 𝜌clad,2
',9

 𝛥𝑧7 … … 𝜌clad
',7 𝜌clad,2

',7
 …
 𝛥𝑧< … … 𝜌clad

',: 𝜌clad,2
',:

END

The LENGTH column is optional. If not provided, SAS4A/SASSYS-1 will assume that the
reactivity feedback values correspond to the axial channel mesh.

3.3 Plant	Virtual	Data	Acquisition	System	

In SAS4A/SASSYS-1, the Control System refers to the module that simulates the response of
a series of mathematical and logical operations performed on zero or more Input Signals and
Demand Signals, usually with the intent of manipulating one or more Control Signals.
TerraPower sponsored work to develop a virtual data acquisition system for core state variables
(Input Signals). [4] The resulting new Control System module is built around object-oriented
constructs such as class inheritance and polymorphism and is a near complete rewrite of the
legacy implementation. This allows the Control System to be written in terms of a generic data
acquisition system and extension to new signal inputs is straightforward. In FY2017, the virtual
data acquisition system model was extended to include PRIMAR-4 (whole plant) Input Signals
such as piping flow rates, coolant and wall temperatures, coolant and cover gas pressures, and
pump speeds.

The extension is implemented in the context of the virtual data acquisition system that defines an
abstract interface for accessing arbitrary plant state variables. The Control System uses a builder
object (an extension of the SAS_BaseDASBuilder class) to create sensor objects (extensions of
the SAS_BaseDASSensor class). The Control System uses the sensor objects to access PRIMAR-
4 state variables. Different modules can use the same builder to create PRIMAR-4 sensors, but
the sensors are never maintained in a centralized container. The module that requests the sensor
is responsible for retaining a reference to the sensor object, can access its value through an
abstract function interface, and is responsible for deallocating the sensor when it is done using it.

FY2017	Updates	to	the	SAS4A/SASSYS-1	Safety	Analysis	Code	
September	30,	2017	

ANL-ART-122	 6	 	

The concept of a DAS Sensor is encapsulated as the abstract base class SAS_BaseDASSensor
with the following interface:

DAS Sensor Method Description
• Init(sInfo,sData,scale,offset) Designated initializer. Calls InitSelf(sInfo,sData).

All parameters are optional.
• GetValue() Returns scaled value of raw sensor.
• SetScale(scale) Sets sensor scaling parameter.
• SetOffset(offset) Sets sensor offset parameter.
+ InitSelf(sInfo,sData) { } Initializes instance of a specific sensor.

All parameters are optional.
+ RawValue() = 0 Returns raw sensor value. Must be overridden in

explicit implementations.

Procedure interfaces preceded by a bullet (•) may not be overridden. Explicit extensions of the
abstract base class must override the RawValue method to implement the code needed to evaluate
and return the value corresponding to a specific PRIMAR-4 state variable. The Control System,
or other modules that use the sensor, calls GetValue() to obtain the current sensor value. This
can be done through a reference to the abstract base class, so the Control System never needs to
know the explicit implementation.

The inclusion of optional scale and offset parameters support simple linear transformations of the
raw sensor data. If not defined, scale = 1 and offset = 0. The linear transformation has the
following form:

GetValue = scale×RawValue + offset	
A simple example of a transformation is one that converts an absolute temperature from Kelvin
to Celsius, where scale = 1.0 and offset = -273.15.

In order to be used, sensors are first allocated and initialized. This is done by a DAS Builder,
which is represented by the abstract base class SAS_BaseDASBuilder with the following
interface:

DAS Builder Method Description
+ NewSensor(sType,sInfo,sData,

 scale,offset) = 0
Signal construction function. sType is required,
other parameters are optional.

Explicit extensions of the abstract base class must override the NewSensor method to allocate
and initialize a new sensor. The explicit implementation uses the sType parameter to identify the
sensor type to allocate. The remaining parameters are used to initialize the newly allocated
sensor by calling Init(sInfo,sData,scale,offset) for the sensor. Code modules refer to an
explicit builder through a reference to the base class and never need to know how the builder is
implemented.

The Control System accesses PRIMAR-4 state variables through the abstract interface described
above. Specifically, the SAS_SYSDASBuilder class extends the SAS_BaseDASBuilder abstract
class to implement the functionality needed for the NewSensor method. The NewSensor method,
in turn, generates one of many possible SAS_SYSDASSensor subclasses that reference PRIMAR-
4 state variables, where SAS_SYSDASSensor subclasses are extensions of the abstract
SAS_BaseDASSensor class. The subclasses of SAS_SYSDASSensor that have been implemented
are summarized in Table 3.

	 	 FY2017	Updates	to	the	SAS4A/SASSYS-1	Safety	Analysis	Code	
	 	 September	30,	2017	

	 7	 ANL-ART-122	

Table	3:	Explicit	SAS_SYSDASSensor	Subclasses	
iSig Subclass Description
-74 NormalizedDecayPower Normalized Decay Power
-73 NormalizedFissionPower Normalized Fission Power
-72 NormalizedTotalPower Normalized Total Power
-71 CoreChannelBCTemperature Core Channel Boundary Condition Temperature
-70 n/a (undefined)
-69 LiquidElementTemperature Liquid Element Temperature
-68 TGNodeWallTemperature Temperature Group Node Wall Temperature
-67 TGNodeLiquidTemperature Temperature Group Node Liquid Temperature
-66 CoreChannelFlowRate Core Channel Flow Rate
-65 PumpSpeed Pump Speed
-64 LSTemperature Liquid Segment Temperature
-63 UnknownFRNDF3 FRNDF3
-62 CVCoverGasTemperature Compressible Volume Cover Gas Temperature
-61 CVCoverGasMass Compressible Volume Cover Gas Mass
-60 CVCoverGasPressure Compressible Volume Cover Gas Pressure
-59 CVWallTemperature Compressible Volume Wall Temperature
-58 CVLiquidDensity Compressible Volume Liquid Density
-57 CVLiquidTemperature Compressible Volume Liquid Temperature
-56 PumpHead Pump Head
-55 SubintervalStartTime Subinterval Start Time
-54 CVCoverGasVolume Compressible Volume Cover Gas Volume
-53 CVLiquidMass Compressible Volume Liquid Mass
-52 CVInterfaceElevation Compressible Volume Interface Elevation
-51 LSFlowRate Liquid Segment Flow Rate
-50 CVLiquidPressure Compressible Volume Liquid Pressure

During the transient simulation, the Control System simply calls the GetValue() method of each
sensor to sample its state. The association between signal numbers (iSig) and subclasses is
maintained by the parameter array SYSDASConfig with the help of type identifiers in the module
SAS_SYSDASTypes.

In the past, adding new “sensors” required modifications to several inter-dependent Control
System routines and code maintenance was challenging. Now, the concept of a sensor is separate
from the implementation of the Control System. If a new PRIMAR-4 sensor needs to be defined,
only a few lines of code need to be added:

1. Create a new subclass of SAS_SYSDASSensor that references the additional PRIMAR-4
state variable.

2. Update the enumerations in the module SAS_SYSDASTypes to identify the new subclass.
3. Update the NewSensor method of the SAS_SYSDASBuilder class to recognize and

allocate the new SAS_SYSDASSensor type.
In addition, for the new sensor to be recognized by the control system,

4. Update the parameter array SYSDASConfig to associate a new signal number with the
new sensor type.

FY2017	Updates	to	the	SAS4A/SASSYS-1	Safety	Analysis	Code	
September	30,	2017	

ANL-ART-122	 8	 	

3.4 Control	System	Extension	

As described above, the Control System performs a series of mathematical and logical operations
on zero or more Input Signals and Demand Signals with the intent of manipulating one or more
Control Signals. In response to needs identified by a Nuclear Energy University Partnership
project, new mathematical operations were required to represent the reactivity feedback
characteristics of an Autonomous Reactivity Control device. [11]

The behavior of an ARC device can be represented by a variable lag compensator. A variable
lag compensator is similar to a lag compensator except that the delay time parameter can vary
during the Control System simulation. An equation that expresses this behavior is

𝑦 𝑡 + 𝜏 𝑡
𝑑𝑦
𝑑𝑡 = 𝑢 𝑡 	

where

 𝑢 𝑡 = input driving function

 𝜏 𝑡 = delay (lag)

 𝑦 𝑡 = output function result
Assuming that the lag time is always positive, a solution to the above equation is

𝑦 𝑡 = 𝑦K𝑒
M NOP

Q O
R
S + 𝑒M

NOP
Q O

R
RS

𝑢 𝑡T

𝜏 𝑡T 𝑒
NOPP
Q OPP

RP
RS 𝑑𝑡T

O

K
	

where 𝑦K = 𝑦 0 and 𝑡K is an arbitrary integration constant.
The complexity of the above solution can be simplified if we assume the input driving function
and delay function are linear functions of time: 𝑢 𝑡 = 𝑢K + 𝑢T𝑡 and 𝜏 𝑡 = 𝜏K + 𝜏T𝑡,
respectively. With this assumption, the solution becomes

𝑦 𝑡 = 𝑦K 1 +
𝜏T

𝜏K
𝑡

M9 QP

+ 𝑢K 1 − 1 +
𝜏T

𝜏K
𝑡

M9 QP

+
𝑢T

1 + 𝜏T 𝑡 − 𝜏K 1 − 1 +
𝜏T

𝜏K
𝑡

M9 QP

	

In the limit that 𝜏T → 0, we arrive at the solution for constant 𝜏 during the time interval:

𝑦 𝑡 = 𝑦K𝑒MO QS + 𝑢K 1 − 𝑒MO QS + 𝑢T 𝑡 − 𝜏K 1 − 𝑒MO QS 	

The analytic solution for the variable lag compensator can be used to solve for the value of 𝑦9 =
𝑦 𝑡K + 𝛥𝑡 at the end of a Control System sub-interval (time step) given the initial value 𝑦K =
𝑦 𝑡K . Knowing the lag time at the beginning of the time step, 𝜏K, and the input driving functions
at the beginning and end of the time step, 𝑢K = 𝑢 𝑡K and 𝑢9 = 𝑢 𝑡K + 𝛥𝑡 , respectively, then
the solution for 𝑦9 at the end of the time step is

𝑦9 = 𝑦K𝑒MW + 𝑢K 1 − 𝑒MW + 𝑢9 − 𝑢K 1 −
1 − 𝑒MW

𝛿 	

where 𝛿 = 𝛥𝑡 𝜏K is a dimensionless time step size. Because this solution is prone to numerical
round-off errors, expansions for the exponential function are used:

	 	 FY2017	Updates	to	the	SAS4A/SASSYS-1	Safety	Analysis	Code	
	 	 September	30,	2017	

	 9	 ANL-ART-122	

𝑒MW = 1 − 𝛿 +
𝛿7

2 −
𝛿Y

6 + 𝑂 𝛿\ 	

and

1 − 𝑒MW

𝛿 = 1 −
𝛿
2 +

𝛿7

6 −
𝛿Y

24 + 𝑂 𝛿\ 	

Using these expansions, the solution is written as

𝑦9 = 𝑦K 1 − 𝛿 +
𝛿7

2 + 𝑢K
𝛿
2 −

𝛿7

3 + 𝑢9
𝛿
2 −

𝛿7

6 + 𝑂 𝛿Y 	

To minimize numerical round-off errors in the code, the following form is used:

𝑦9 ≈ 𝑦K 1 − 𝛿 1 − 𝛿
1
2 + 𝑢K 𝛿

1
2 − 𝛿

1
3 + 𝑢9 𝛿

1
2 − 𝛿

1
6 	

which is second-order accurate in 𝛿. This form also avoids the need to make expensive
exponential function evaluations.
A variable lag compensator is identified in the Control System input as signal type ITYPE = 23.
It requires two input signals to define the time-dependent functions 𝑢 𝑡 and 𝜏 𝑡 . These are
identified by the input parameters J1 and J2, respectively. Input for the variable lag compensator
is summarized in Table 4.

Table	4:	Input	Requirements	for	a	Variable	Lag	Compensator	
Input Description
ISIG User-defined signal number
ITYPE = 23 Variable Lag Compensator type
J1 Signal # of driving function, 𝑢(𝑡)
J2 Signal # of delay time, 𝜏 𝑡
F1 Multiplier for driving function

default: 1
F2 (unused)
F3 (unused)
F4 Steady-state initial condition, 𝑦 0

default: 𝑦 0 = 𝑢 0
F5 Zero-crossing parameter (F5 > 0)

Additional input includes two optional parameters, F1 and F4, and one required parameter, F5. If
the optional parameters are blank or zero, defaults will be applied as indicated in the table. For
example, if F1 is non-zero, then the actual driving function will include a multiplier:

𝑢 𝑡 = F1×sig J1 	

FY2017	Updates	to	the	SAS4A/SASSYS-1	Safety	Analysis	Code	
September	30,	2017	

ANL-ART-122	 10	 	

Likewise, if F4 is non-zero, it is used to define the initial steady-state condition as 𝑦 0 = F4.
Otherwise, the steady-state solution to the equation is 𝑦 0 = 𝑢 0 .
The zero-crossing parameter, F5, is used in the same manner as with other Control System
signals to stabilize convergence testing when the solution for 𝑦 𝑡 is near zero. The normalized
error is approximated as follows to avoid divide-by-zero errors:

error =
𝛥𝑦
𝑦 ≅

𝛥𝑦
𝑦 + F5

	

Therefore, users can select a value for F5 that is small enough to ensure convergence when 𝑦 𝑡
is small, but large enough to avoid excessive iterations when small values for 𝑦 𝑡 do not have a
significant impact on the overall solution.

Like the lag compensator, the variable lag compensator shifts both the phase and amplitude of
the input signal 𝑢 𝑡 . However, the phase and amplitude vary as a function of time through the
additional input for 𝜏 𝑡 . To demonstrate this, consider the following conditions:

𝑢 𝑡 = sin
2𝜋
5 𝑡 	

𝜏 𝑡 = 1.9 sin
2𝜋
50 𝑡 + 2	

𝑦 0 = 2	
These can be represented in the Control System input as follows:

INCONT 5
Time: t
 1 -55 0 0 0.0 0.0 0.0 0.0 0.0
Driving Signal: Sin(2πt/5)
 11 22 1 0 1.0 1.2566370 0.0 0.0
Lag Time Variation: Sin(2πt/50)
 12 22 1 0 1.0 .12566370 0.0 0.0
Constant: 2
 13 21 0 0 2.0 0.0 0.0 0.0 0.0
Lag Time: 1.9Sin(2πt/50) + 2
 17 1 12 13 1.9 1.0 1.0 0.0 0.0
Variable Lag Compensator(11,17)
ITYPE J1 J2 F1 F4 F5
 18 23 11 17 1.0 0.0 0.0 2.0 0.001
 999 1
 8001 2 0.00000001 0.00000001
END

Using the above Listing in a SAS4A/SASSYS-1 input file would produce the Control System
output shown in Figure 1.

	 	 FY2017	Updates	to	the	SAS4A/SASSYS-1	Safety	Analysis	Code	
	 	 September	30,	2017	

	 11	 ANL-ART-122	

	
Figure 1: Results of Applying a Variable Lag Compensator to an Incoming Sine Function

Note that because F4 = 2, the variable lag compensator starts at the non-equilibrium value
𝑦 0 = 2. As the lag time 𝜏 𝑡 rises and falls, the delay in the input signal becomes longer and
shorter, respectively. Similarly, the amplitude of the output decreases and increases.

4 Other	Code	Improvements	
Numerous additional code improvements have been made during FY2017. These are

summarized briefly in the following sections.

4.1 Documentation	

With the release of SAS4A/SASSYS-1 version 5.2, the code manual has also been updated. The
latest release is

T. H. Fanning, A. J. Brunett, and T. Sumner, eds., The SAS4A/SASSYS-1 Safety
Analysis Code System, ANL/NE-16/19, Nuclear Engineering Division, Argonne
National Laboratory, March 31, 2017.

The manual consists of multiple documents spanning 2200+ pages that detail user input,
theoretical considerations, and implementation details. The sizes of the documents have become
unmanageable as traditional office-type documents. A small activity has been initiated to convert
the documents to a markup format that is more amenable to frequent updates and edits that can
be tracked in an SQA environment.

-2

-1

0

1

2

3

4

0 10 20 30 40 50 60 70 80 90 100

Si
gn

al
	V
al
ue

Time

Variable	Lag	Compensator

Sig:	11	Type:	22	SINE	(Input)

Sig:	17	Type:	1	SUMMER	(Lag	Time)

Sig:	18	Type:	23	Variable	Lag	Compensator

FY2017	Updates	to	the	SAS4A/SASSYS-1	Safety	Analysis	Code	
September	30,	2017	

ANL-ART-122	 12	 	

4.2 Compliance	with	Fortran	2003	Standards	

Although the history of SAS4A/SASSYS-1 spans nearly five decades, it has undergone
continuous updates to maintain compliance with software programming standards. The most
recent update brings the source code into compliance with Fortran 2003 standards. Obsolete code
that has been eliminated includes

• 73 arithmetic “if” statements
• 181 computed “go to” statements
• 4,141 DO loops without proper “end do” termination
• 350 invalid edit descriptors

Non-standard code that will continue to be accepted includes the use of tab characters (for
indenting) and source code line lengths that extend beyond 132 characters. These extensions
support code refactoring as the source undergoes continued modernization.

4.3 Cross-Platform	Consistency	

Code testing and validation is always a challenge. This challenge is made even more difficult
when software is maintained for multiple platforms, as is the case with SAS4A/SASSYS-1
which supports macOS, Linux, and Windows systems. With careful tuning of compiler options,
SAS4A/SASSYS-1 now produces bit-identical results on all three platforms when using the Intel
Fortran compiler. This is true even for optimized code. Testing on all three platforms now uses
the same set of reference solutions, which significantly increases the value of regression testing.

4.4 Support	for	64-bit	Compilation	

SAS4A/SASSYS-1 can now be compiled either as a 32-bit or 64-bit application. Compiling as a
32-bit executable is still the default because it is required when coupling with the spatial kinetics
capabilities of DIF3D-K. Compiling as a 64-bit application allows for larger problem domains
and memory usage, although it is not a critical need. The main motivation for compiling in 64-bit
was to identify and eliminate memory access bugs. Both 32- and 64-bit versions now produce
bit-identical results and can be tested against the same reference solutions.

One issue remains, however. In extensive testing, a round-off error was identified in the Intel
Fortran libraries. The problem appears in the 32-bit I/O libraries that ship with the Linux and
macOS distributions for Intel Fortran. It does not appear in the 32-bit libraries for Windows or
the 64-bit libraries for any platform. This issue has been reported to Intel.

4.5 Bug	Fixes	
A number of issues have been identified and corrected since the release of SAS4A/SASSYS-1
Version 5.2. These corrections will be incorporated into the forthcoming 5.2.1 revision.
Corrected issues include the following:

• RESTART files are no longer generated if NSTEP = 0, consistent with documentation.
• Eliminated a potential divide-by-zero error when the Young's Modulus for cladding and

fuel are not provided in input.
• Corrected the declaration of a local variable used in debug print statements.
• Corrected an issue where the input parameter IPRION was not treated consistently when

PRIMAR-4 was not being used.

	 	 FY2017	Updates	to	the	SAS4A/SASSYS-1	Safety	Analysis	Code	
	 	 September	30,	2017	

	 13	 ANL-ART-122	

• Eliminated a potential floating-point exception on Windows when debug prints are
enabled.

• Eliminated a potential divide-by-zero error when predicting the time-step cutback in
PRIMAR-4 if core channel flow rates are not changing.

• Corrected an issue where a non-zero value for IFLOW would impact PRIMAR-4
calculations.

• Eliminated a rare divide-by-zero error on Windows caused by poor CPU timing
resolution.

5 Current	Development	Needs	
Development needs have been identified in three broad areas. First, the software quality

assurance program must be maintained in order for SAS4A/SASSYS-1 to remain viable as a
safety analysis tool for nuclear facilities. Second, gaps in modeling capabilities exist that should
be addressed on a prioritized basis. Third, SAS4A/SASSYS-1 relies on input from related design
and analysis tools. Some of these tools are only maintained on an ad-hoc basis.

5.1 Software	Quality	Assurance	
Code maintenance activities have shifted into a more formal software quality assurance Program
that has been developed under the Regulatory Technology Development Plan. [12,13] Source
code and documentation are maintained within a software configuration management system and
formal code changes are tracked in an electronic ticket system according to SQA procedures.
These activities are vital for any software that will be used to assess the safety of a nuclear
installation, but they do require resources to maintain. Feedback from other DOE, NRC, and
industrial organizations suggest that SQA Program compliance requires between 30–60% of
software maintenance resources. The goal of the SAS4A/SASSYS-1 SQA Program is to
minimize, to the extent possible, this overhead. For example, the current Program does not intend
to achieve NQA-1 compliance [14,15] as this may be better addressed by a commercial-grade
dedication process pursued by domestic industry. On the other hand, if DOE intends to authorize
construction of a fast spectrum test reactor, then safety analysis codes must comply with DOE
quality assurance requirements set forth in DOE Order 414.1D.
In addition to Program maintenance and compliance, additional resources are needed to improve
verification and regression testing, code coverage analyses, validation, and documentation. An
evaluation of the current test suite reveals that there are important code-coverage gaps that need
to be addressed even though the regression test suite has expanded considerably in the past year.
Translation of the code documentation into a more manageable file format is also taking place,
but at a slow pace.
Adherence to an SQA program will help ensure that software development and documentation
activities are carried out in a way to ensure that SAS4A/SASSYS-1 can be used for potential
license or authorization of a fast spectrum reactor.

5.2 Modeling	Improvements	

Improvements to SAS4A/SASSYS-1 not only includes the implementation of new capabilities
required to support safety analyses, but source code changes required to improve usability,
performance, scalability, and maintenance. The latter is an ongoing process that is needed to

FY2017	Updates	to	the	SAS4A/SASSYS-1	Safety	Analysis	Code	
September	30,	2017	

ANL-ART-122	 14	 	

maintain existing capabilities as programming languages and computational resources evolve.
The former is based on prioritization of identified gaps in modeling capabilities. Some of these
gaps, based on current R&D activities, include the following:
Metal Fuel Transient Modeling: The Korea Atomic Energy Research Institute (KAERI) has
invested considerable resources in developing metallic fuel accident modeling capabilities in the
context of SAS4A/SASSYS-1. These models are directly relevant to U.S. SFR designs.
Currently, however, these models exist in a separate branch of code development. Considerable
effort will be needed to reintegrate the updates into the official SAS4A/SASSYS-1 code.

Oxide Fuel Transient Modeling: International organizations, such as CEA and JAEA, have
interest in oxide fuel severe accident modeling. SAS4A/SASSYS-1 already has a strong oxide
fuel modeling capability, and JAEA is working with Argonne to integrate updates to those
models into SAS4A/SASSYS-1. It is important this work continues so that DOE maintains its
leadership role in international fast reactor safety.
Integration of Higher-Order Feedback Models: The feedback models described in Section 3.1
were designed to simplify the integration of the metal fuel transient models being developed by
KAERI. The feedback models need to be integrated into the severe accident models in
SAS4A/SASSYS-1.
Integration with NEAMS Tools: A number of developments being pursued by the Nuclear
Energy Advanced Modeling and Simulation (NEAMS) Program would be of benefit to
SAS4A/SASSYS-1. Efforts to integrate the System Analysis Module (SAM) should continue,
and the potential for NEAMS Workbench to improve usability and to simplify preparation of
user input should be evaluated.

5.3 Support	for	Related	Tools	
Although SAS4A/SASSYS-1 is a critical component for fast reactor safety analysis, it is not the
only software tool required for design, safety analysis, and licensing. In 1977 the U.S. DOE
published a “compendium” of computer codes for the safety analysis of fast reactors. [16] At the
time, more than 130 codes were identified, although many were R&D tools that may not be
essential for authorization or licensing. Forty years since its publication, most of the identified
codes no longer exist.

It is beyond the scope of this report to identify all of the computer codes that may be required for
fast reactor design and analysis. Within the scope of design-basis and beyond-design-basis safety
analysis, however, key tools are required to provide the following:

• Fast spectrum cross-section processing
• Flux and power distributions
• Gamma transport and heating
• Fuel cycle and depletion analysis
• Flow orifice design and optimization
• Kinetics and perturbation theory analysis
• Source term and radionuclide release

Computer codes that provide these capabilities exist, but support and maintenance is ad-hoc in
most cases. Formal support and SQA programs need to be established for these and other tools
required for design and safety analysis.

	 	 FY2017	Updates	to	the	SAS4A/SASSYS-1	Safety	Analysis	Code	
	 	 September	30,	2017	

	 15	 ANL-ART-122	

6 Summary	
Over the last few years, the SAS4A/SASSYS-1 safety analysis code has undergone

significant revisions to modernize code structure and data management. [17,18,19,4] With
continued interest in advanced non-LWR reactors, there is also growing interest in applying
SAS4A/SASSYS-1 to a number of SFR and LFR concepts. In total, there are twenty-six license
agreements in place, with eight of them established in the current fiscal year. The safety analysis
code continues to be of significant importance to DOE sponsored activities as well as to
domestic and international collaborations. SAS4A/SASSYS-1 Version 5.2 was completed in
March 2017 and released in May.
Development activities that have been completed include extensions to the void and cladding
reactivity feedback models, improved Control System capabilities through a new virtual data
acquisition system for plant state variables, and an additional Block Signal for a variable lag
compensator to represent reactivity feedback for novel shutdown devices.
Current code development and maintenance needs are also summarized in three key areas:
software quality assurance, modeling improvements, and maintenance of related tools. With
ongoing support, SAS4A/SASSYS-1 can continue to fulfill its growing role in fast reactor safety
analysis and help solidify DOE’s leadership role in fast reactor safety both domestically and in
international collaborations.

7 Acknowledgements	
Argonne National Laboratory's work was supported by the U.S. Department of Energy,

Office of Nuclear Energy, under contract DE-AC02-06CH11357.

8 References	
1. T. H. Fanning, A. Brunett, and T. Sumner, eds., The SAS4A/SASSYS-1 Safety Analysis

Code System, ANL/NE-16/19, Nuclear Engineering Division, Argonne National
Laboratory, March 31, 2017.

2. M. Denman et al., “Sodium Fast Reactor Safety and Licensing Research Plan – Volume I,”
SAND2012-4260, Sandia National Laboratories, 2012.

3. Idaho National Laboratory, “Advanced Reactor Technology – Reactor Technology
Development Plan (RTDP),” INL/EXT-14-32837, 2015.

4. T. H. Fanning, A. J. Brunett, and G. Zhang, unpublished information, Argonne National
Laboratory, September 30, 2016.

5. D. Petti, R. N. Hill, J. Gehin, et al., Advanced Demonstration and Test Reactor Options
Study, INL/EXT-16-37867, Revision 3, January 2017.

6. T. Sumner, A. Moisseytsev, and F. Heidet, unpublished information, Argonne National
Laboratory, September 30, 2017.

7. International Atomic Energy Agency, Benchmark Analysis of EBR-II Shutdown Heat
Removal Tests, IAEA-TECDOC-1819, Vienna, Austria, August 2017.

8. T. Takada, T. Kuroishi, M. Ohashi, and K. Kaneto, “Neutronic Decoupling and
Nonlinearity of Sodium Void Worth of an Axially Heterogeneous LMFBR in ATWS

FY2017	Updates	to	the	SAS4A/SASSYS-1	Safety	Analysis	Code	
September	30,	2017	

ANL-ART-122	 16	 	

Analysis,” Proc. Int’l Conf. on Design and Safety of Advanced Nuclear Power Plants, 25–
29 October, 1992.

9. M. Aufiero, M. Martin, M. Fratoni, E. Fridman, and S. Lorenzi, “Analysis of the Coolant
Density Reactivity Coefficient in LFRs and SFRs via Monte Carlo
Perturbation/Sensitivity,” Proc. PHYSOR 2016, Sun Valley, ID, May 1–5, 2016.

10. A. Tentner, S. Kang, and A. Karahan, “Advances in the Development of the SAS4A Code
Metallic Fuel Models for the Analysis of Prototype Gen-IV Sodium-cooled Fast Reactor
Postulated Severe Accidents,” Proc. Int’l Conference on Fast Reactors and Related Fuel
Cycles, FR17, Yekaterinburg, Russia, 26–29 June 2017.

11. S. A. Qvist, “Tailoring the response of Autonomous Reactivity Control (ARC) systems,”
Annals of Nuclear Energy, 99, pp. 383–398, January 2017.

12. A. J. Brunett, L. L. Briggs, T. H. Fanning, Status of SFR Codes and Methods QA
Implementation, ANL-ART-83, Argonne National Laboratory, January 31, 2017.

13. A. Brunett and T. H. Fanning, Implementation of Software QA for SAS4A/SASSYS-1, ANL-
ART-110 Rev. 0, Argonne National Laboratory, September 8, 2017.

14. American Society of Mechanical Engineers, Quality Assurance Requirements for Nuclear
Facility Applications, ASME NQA-1-2008, 2008.  

15. American Society of Mechanical Engineers, Addenda to ASME NQA-1-2008: Quality
Assurance Requirements for Nuclear Facility Applications, NQA-1a-2009, 2009.  

16. U.S. Department of Energy, A Compendium of Computer Codes for the Safety Analysis of
Fast Breeder Reactors, DOE/ET-0009, U.S. DOE Division of Reactor Research and
Development, October 1977.

17. T. H. Fanning, F. E. Dunn, D. Grabaskas, T. Sumner, and J. W. Thomas, unpublished
information, Argonne National Laboratory, September 20, 2013.

18. T. H. Fanning, A. Brunett, T. Sumner, and N. Stauff, unpublished information, Argonne
National Laboratory, September 26, 2014.

19. T.H. Fanning, A. Brunett, T. Sumner, R. Hu, unpublished information, Argonne, IL,
September 30, 2015.

	 	 FY2017	Updates	to	the	SAS4A/SASSYS-1	Safety	Analysis	Code	
	 	 September	30,	2017	

	 17	 ANL-ART-122	

Argonne National Laboratory is a U.S. Department of Energy
laboratory managed by UChicago Argonne, LLC

Nuclear Engineering Division
Argonne National Laboratory
9700 South Cass Avenue, Bldg. 208
Argonne, IL 60439-4842

www.anl.gov

